SOLVE LINEAR SYSTEMS USING ELIMINATION

1. Solve each linear system.

a)
$$x + 3y = 5$$
 ① $5x + 2y = 12$ ②

	Multiply one of the equations: 0×5 $5 \times + 15 = 25$		
	Add or subtract the equations to eliminate one of the variables and then solve:	Solve for the other variable: Sub $y=1$ into Q	Solution:
	5x + 2y = 12 5x + 15y = 25	x + 3y = 5	: PoI
-		x+3(1) = 5	15
	Ø [29154] = [12-25]	X+ 3 = 5	(2,1)
	-13y = -13 -13 -13	X = 5 - 3 $X = 2$	

b)
$$3x + 2y = 2$$
 1
 $x + 4y = 14$ 2

Multiply one of the equations: (2) x 3	3(x+49=14) 3x+124: 42 3	
Add or subtract the equations to eliminate one of the variables and then solve:	Solve for the other variable: Sub y=4 into (2)	Solution:
3x + 2y = 2 $3x + 12y = 42$ $0 [2y-12y] = [2-42]$	X + 4 y = 14 X + 4 (4) = 14 X + 16 = 14	: POI
-10y = -40 -10 -10	X = 14 - 16 $X = -2$	(-2,4)

c)
$$3x - y = 2$$
 10 2 $2x + 3y = 16$ 2

	3(3x-5)=2)	
Multiply one of the equations: ① x 3	9x - 3y = 6	
Add or subtract the equations to eliminate one of the variables and then solve:	Solve for the other variable: Sub $x = 2$ into ①	Solution:
$2x + 3y = 16$ $+ 9x - 3y = 6$ $[2x + 9x] \emptyset = [16 + 6]$ $11x = 22$ 11 $X = 21$	3x - y = 2 $3(2) - y = 2$ $6 - y = 2$ $6 - 2 = y$ $H = y$: PoT 15 (2,4)

2. A local band called Rawk held a concert where 5000 people attended with *x* representing the number of lower bowl tickets and *y* representing the number of upper bowl seating tickets.

This is represented by the equation:

$$x + y = 5000$$

The lower bowl tickets cost \$60 while the upper bowl tickets cost \$40. Ticket sales totaled \$264 000. This is represented by the equation: 60x + 40y = 264 000

How many lower bowl and upper bowl tickets were sold?

2 = 3

$$60x + 40y = 264000$$
 $60x + 60y = 300000$
 $[40y - 60y] = [264000 - 300000]$
 $-20y = -36000$
 $y = 1800$